Positive Solutions to a Linearly Perturbed Critical Growth Biharmonic Problem
نویسندگان
چکیده
Existence and nonexistence results for positive solutions to a linearly perturbed critical growth biharmonic problem under Steklov boundary conditions, are determined. Furthermore, by investigating the critical dimensions for this problem, a Sobolev inequality with remainder terms, of both interior and boundary type, is deduced.
منابع مشابه
Multiple solutions for a perturbed Navier boundary value problem involving the $p$-biharmonic
The aim of this article is to establish the existence of at least three solutions for a perturbed $p$-biharmonic equation depending on two real parameters. The approach is based on variational methods.
متن کاملExistence of three positive solutions for nonsmooth functional involving the p-biharmonic operator
This paper is concerned with the study of the existence of positive solutions for a Navier boundaryvalue problem involving the p-biharmonic operator; the right hand side of problem is a nonsmoothfunctional with variable parameters. The existence of at least three positive solutions is establishedby using nonsmooth version of a three critical points theorem for discontinuous functions. Our resul...
متن کاملStability and Intersection Properties of Solutions to the Nonlinear Biharmonic Equation
We study the positive, regular, radially symmetric solutions to the nonlinear biharmonic equation ∆φ = φ. First, we show that there exists a critical value pc, depending on the space dimension, such that the solutions are linearly unstable if p < pc and linearly stable if p ≥ pc. Then, we focus on the supercritical case p ≥ pc and we show that the graphs of no two solutions intersect one another.
متن کاملMultiplicity result to some Kirchhoff-type biharmonic equation involving exponential growth conditions
In this paper, we prove a multiplicity result for some biharmonic elliptic equation of Kirchhoff type and involving nonlinearities with critical exponential growth at infinity. Using some variational arguments and exploiting the symmetries of the problem, we establish a multiplicity result giving two nontrivial solutions.
متن کاملBifurcation Problem for Biharmonic Asymptotically Linear Elliptic Equations
In this paper, we investigate the existence of positive solutions for the ellipticequation $Delta^{2},u+c(x)u = lambda f(u)$ on a bounded smooth domain $Omega$ of $R^{n}$, $ngeq2$, with Navier boundary conditions. We show that there exists an extremal parameter$lambda^{ast}>0$ such that for $lambda< lambda^{ast}$, the above problem has a regular solution butfor $lambda> lambda^{ast}$, the probl...
متن کامل